Formal total synthesis of trichodiene via skeletal rearrangement of regioselective photochemical [2+2] cycloadducts from cyclohexene derivatives

Yoshikazu Kitano, Junko Fukuda, Kazuhiro Chiba and Masahiro Tada *
Laboratory of Bio-organic Chemistry, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183, Japan

Abstract

A formal total synthesis of trichodiene 1 is accomplished via the photochemical [$2+2$] cycloaddition of 3-methylcyclohex-2-enone with methyl cyclohex-1-enecarboxylate to give methyl ($1 \alpha, 2 \beta, 7 \beta, 8 \alpha$)-2-methyl-6-oxotricyclo[6.4.0.0 ${ }^{2.7}$]dodecan-1-carboxylate, and its skeletal rearrangement to give a tricyclo[6.4.0.0 ${ }^{2.6}$]dodecene derivative. Cleavage of the central five-membered ring of the tricyclo[6.4.0.0 ${ }^{2,6}$]dodecene and modification of functional groups leads to the synthesis of trichodiene 1.

Introduction

Trichodiene $\mathbf{1}^{1}$ is a bicyclic sesquiterpene which has been considered to be a common biogenetic precursor ${ }^{2}$ of trichothecene-type mycotoxins, e.g., trichodermol 2a, ${ }^{3}$ verrucarol $2 \mathbf{2 b},{ }^{4}$ anguidine $2 \mathbf{c}^{5}$ and deoxynivalenol 2d. ${ }^{6}$ These mycotoxins were also reported to show various biological activities. ${ }^{7}$ One of the structural characteristics of tricothecenetype sesquiterpenes is their two contiguous asymmetric quaternary centres connecting the five- and one of the sixmembered rings in the molecule. Although syntheses of trichodiene 1 have been reported by several groups, ${ }^{8,9}$ it has been difficult to control the stereochemistry of the two contiguous chiral quaternary carbons whose $\mathrm{C}-\mathrm{C}$ bond can rotate freely. We discovered the ring-size effect on [2+2] photochemical cycloaddition of enones with cyclic olefins, ${ }^{10}$ in which the regioselectivity of the reaction was determined by the ring size of the cyclic olefins. In the photocycloaddition of 3-methylcyclohex-2-enone 4 with methyl cyclobut-1-enecarboxylate 3 or with methyl cyclopent-1-enecarboxylate 6 , the photoadduct has the head-to-head, cis-transoid-cis ring system 5 , or 7 , whereas the photocycloaddition of enone 4 with methyl cyclohex-1-enecarboxylate 8 gave regioselectively a head-totail, cis-transoid-cis photoadduct 9 which contains the two contiguous asymmetric quarternary carbons (Scheme 1). We report here a formal total synthesis of trichodiene 1 from the photoadduct 9 which has contiguous quaternary carbons of the same stereochemistry as those in trichodiene 1.

Results and discussion

We planned to synthesize trichodiene 1 from tricycle 9 via successive reactions for rearrangement of a tricyclo[6.4.0.0 ${ }^{2,7}$]dodecane to a tricyclo[6.4.0.0 $0^{2,6}$]dodecene $\mathbf{1 0}$, transformation of the methyl ester into a methyl group, cleavage of the central five-membered ring to give compound 11, and modification of functional groups, via compound 12 as summarised in Scheme 2.
The photoadduct 9 from reaction of 3 -methylcyclohex-2enone 4 with methyl cyclohex-1-enecarboxylate 8 was transformed into 6α-alcohol 13 quantitatively by reduction with NaBH_{4} in methanol (Scheme 3). The stereochemistry at C-6 of compound 13 was deduced from the nuclear Overhauser effect (NOE) between $6 \beta-\mathrm{H}(\delta 3.75)$ and $7 \beta-\mathrm{H}(\delta 2.24)$. The alcohol 13 was functionalised with methanesulfonyl chloride (MsCl) in pyridine to produce mesyl ester 14 in which the $\mathrm{C}-\mathrm{O}$ bond of the mesyl group is anti-parallel with one of the $\mathrm{C}-\mathrm{C}$ bonds in the cyclobutane ring. The skeletal rearrangement of

Scheme 1 Ring-size effect on [2+2] photocycloaddition of enone with cyclic olefins

compound 14 was then examined under various conditions, and afforded tricyclo[6.4.0.0 ${ }^{2,6}$]dodec-7-ene derivative $\mathbf{1 0}$. When the mesyl derivative 14 was treated with $\mathrm{HCO}_{2} \mathrm{~K}$ in $\mathrm{HCO}_{2} \mathrm{H}$ or potassium acetate in acetic acid the simple 1,2elimination product 15 was predominantly obtained, whereas the yield of the ring-migration product 10 was 18.4 or 20.9%, respectively. Finally, the mesyl ester 14 was treated with AcOK in trifluoroacetic acid (TFA) to afford the rearranged compound 10 in moderate yield ($50-60 \%$) together with compound $15(10-20 \%)$. The proof of the stereochemistry at C-6 of compound 10 was obtained from the NOE between $6 \beta-\mathrm{H}$

Scheme 2 Synthetic plan for trichodiene

Scheme 3 Reagents and conditions: i, $\mathrm{NaBH}_{4}, \mathrm{MeOH}$; ii, MsCl , pyridine; iii, (a) $\mathrm{AcOK}, \mathrm{TFA}$; (b) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}$; (c) MsCl , pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (d) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}$, reflux; iv, $\mathrm{O}_{3}, \mathrm{MeOH},-78^{\circ} \mathrm{C}$; then NaBH_{4}; v, (a) TBDMSCl, DIPEA, DMF; (b) BzCl , pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (c) $1 \% \mathrm{HCl}$ in $95 \% \mathrm{EtOH}$; (d) AcOH , aq. THF, $60^{\circ} \mathrm{C}$; (e) MsCl , pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; vi, DBU, toluene, reflux
($\delta 2.59$) and $2 \beta-\mathrm{Me}(\delta 1.13)$. The methyl ester of compound $\mathbf{1 0}$ was transformed into a methyl group by the following threestep reactions; reduction of the methyl ester 10 with LiAlH_{4} (LAH) in diethyl ether, functionalisation of the alcohol 16 with MsCl and pyridine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give mesyl ester 17 (80.8\% from 10), and finally hydride displacement of mesyl ester 17 with LAH in refluxing $\mathrm{Et}_{2} \mathrm{O}$. As the formation of a hydrocarbon 18 could be determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy after separation with a short silica gel column (eluted with
hexane), crude alkene 18 was used for the next reaction without further purification.

Ozonolysis of alkene 18 with ozone gas in MeOH at $-78^{\circ} \mathrm{C}$, followed by reduction of the ozonide with NaBH_{4} in MeOH , produced a hemiacetal 19 (43.1% from mesyl ester 17), which may be formed by the reaction of an intermediate during ozonolysis of alkene 18 with MeOH , instead of the desired diols 20a and 20b. The stereochemistry at C-7 of compound 19 was deduced from the coupling constant of $7-\mathrm{H}(\delta 4.56$, d, $J 10 \mathrm{~Hz})$ with $6-\mathrm{H}(\delta 2.57, \mathrm{~m})$. Reduction of the hemiacetal 19 was achieved with LAH in $\mathrm{Et}_{2} \mathrm{O}$ to give diols 20a and 20b in 51.1 and 45.2% yield, respectively. The stereochemistry at C-1 of compound 20a was deduced from the NOE between 1β-H (δ 5.31) and $1^{\prime}-\mathrm{Me}(\delta 1.00)$ of monobenzoates 23a.

In order to form the exo-methylene moiety, functionalisation of the primary alcohol of diols $\mathbf{2 0 a}$ and $\mathbf{2 0 b}$ was examined with MsCl in pyridine and was found to give cyclic ethers 26a and 26b, instead of the corresponding monomesyl derivative, respectively. Hydroxy groups were thus protected as follows. Silylation of primary alcohols ${ }^{11}$ 20a and 20b with tertbutyldimethylsilyl chloride (TBSCl) and diisopropylethylamine (DIPEA) in N, N-dimethylformamide (DMF), followed by esterification of the secondary alcohol groups of monosilyl ethers 21a and 21b with BzCl and pyridine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave benzoates 22a and 22b in 94.6 and 79.9% yield, respectively. The removal of the silyl group from compound 22a was carried out with $1 \% \mathrm{HCl}$ in 95% EtOH (96.2%)) ${ }^{12}$ whereas deprotection of the silyl group of compound $\mathbf{2 2 b}$ (in 90.2% yield) was carried out in AcOH-aq. tetrahydrofuran (THF), ${ }^{13}$ necessitated by the insolubility of compound 22b in EtOH. Reaction of benzoates 23a and 23b with MsCl and pyridine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave mesyl esters 24a and 24b in 99.2 and 98.1% yields, respectively. Treatment of diesters 24a and 24b with 1,8-diazabicyclo-[5.4.0]undec-7-ene (DBU) ${ }^{14}$ in refluxing toluene afforded exo-methylene derivatives 25a (91.3%) and 25b (32.4%), respectively. The difference of yields between diastereoisomers $\mathbf{2 5 a}$ and $\mathbf{2 5 b}$ may be attributed to the steric hindrance of the benzoyl group which may disturb the nucleophilic attack of DBU at the 2^{\prime}-position in the β-isomer 24b.

Epimerisation of the secondary alcohol of the monosilyl ether 21b was examined by two-step reactions as follows. Oxidation of compound 21b with pyridinium chlorochromate (PCC)-alumina ${ }^{15}$ in benzene gave the ketone 27 in 92.3% yield. Reduction of ketone 27 with LAH in dry $\mathrm{Et}_{2} \mathrm{O}$ afforded the 1α-diol 20a and 1β-diol 20b in 48.6 and 44.8% yield respectively, with poor stereoselectivity (Scheme 4). The 1β-diol 20b can be transformed into the 1α-diol 20a by repeating these procedures.

With construction of the five-membered ring moiety of trichodiene 1 successfully accomplished, the modification of the functional groups in the cyclohexane ring of the intermediate 25a was examined. Cleavage of the benzoyl group in 25a, followed by oxidation of the product 28 with PCC-alumina ${ }^{15}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, gave the ketone 29, which was converted into enone 12 by selenation at the α position of the ketone, using lithium diisopropylamide (LDA) in THF and benzeneselenenyl chloride (PhSeCl) in THF-hexamethylphosphoric triamide (HMPA), and subsequent elimination with $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (56.0%). Introduction of a methyl group at the β-position of enone 12 and re-introduction of the double bond was achieved by successive methylation with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CuLi}$ in $\mathrm{Et}_{2} \mathrm{O}$, quenching of the resulting enolate anion with PhSeCl in $\mathrm{Et}_{2} \mathrm{O}$, and oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give enone 30 (42.9%) without separation of the intermediate. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, IR and mass spectra of compound 30 were identical with those of compound $\mathbf{3 0}$ as reported by Gilbert and Selliah. ${ }^{8}$ As the synthesis of trichodiene 1 from compound 29 was published recently by the latter authors (Scheme 5), ${ }^{8}$ this report constitutes another formal total synthesis of trichodiene 1.

Scheme 4 Reagents and conditions: i, PCC-alumina, benzene; ii, $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}$

Scheme 5 Reagents and conditions: $\mathrm{i}, \mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O} ; \mathrm{ii}, \mathrm{PCC}$-alumina, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, (a) LDA, THF, $-78{ }^{\circ} \mathrm{C}$; (b) $\mathrm{PhSeCl}, \mathrm{HMPA}, \mathrm{THF}$; (c) $\mathrm{H}_{2} \mathrm{O}_{2}$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iv, (a) $\mathrm{Me}_{2} \mathrm{CuLi}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; (b) PhSeCl , $\mathrm{Et}_{2} \mathrm{O}$; (c) $\mathrm{H}_{2} \mathrm{O}_{2}$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Experimental

NMR spectra were measured on a JEOL JNM-EX-270 spectrometer at $270\left({ }^{1} \mathrm{H}\right)$ and $68\left({ }^{13} \mathrm{C}\right) \mathrm{MHz}$ for samples in CDCl_{3} containing tetramethylsilane as internal standard. J Values are in Hz . IR and UV spectra were measured on a JASCO IR-810 infrared spectrometer and a JASCO UVDEC460 spectrometer, respectively. Mass spectra were recorded on a JEOL JMS-SX-102A spectrometer. Mps were measured on a MEL-TEMP (Laboratory Device) and are uncorrected; TLC was carried out on Kiesel-gel GF_{254} (0.25 mm thickness). Silica gel 60 (70-230 mesh ASTM) was used for column chromatography.

Methyl ($1 \alpha, 2 \beta, 7 \beta, 8 \alpha$)-2-methyl-6-oxo-tricyclo[6.4.0.0 ${ }^{2,7}$]-dodecane-1-carboxylate 9

A toluene solution ($50 \mathrm{~cm}^{3}$) of 3-methylcyclohex-2-enone 4 $(2.2 \mathrm{~g}, 20 \mathrm{mmol})$ and methyl cyclohex-1-enecarboxylate 8 (2.8 $\mathrm{g}, 20 \mathrm{mmol}$) was irradiated through a Pyrex glass vessel at $-5^{\circ} \mathrm{C}$ for 5 days under nitrogen, using a 100 W high-pressure Hg lamp. The reaction mixture was concentrated under reduced pressure and the residue was subjected to column chromatography over silica gel [eluted with hexane-ethyl acetate (5:1)] to give the photoadduct $9\left(3.0 \mathrm{~g}, 60.0 \%\right.$) as an oil (Found: M^{+}, $250.1568 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$ requires $M, 250.1569$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 2940, 2862, 1721, 1693, 1450, 1430, 1302, 1240, 1220, 1151 and $1029 ; \delta_{\mathrm{H}} 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 2.96(1 \mathrm{H}$, ddd, $J 11,5$ and $2,8-$ $\mathrm{H}), 2.50(1 \mathrm{H}, \mathrm{d}, J 11,7-\mathrm{H}), 2.43-2.25(2 \mathrm{H}, \mathrm{m}), 2.06-1.86(2 \mathrm{H}$, $\mathrm{m}), 1.79-1.49(6 \mathrm{H}, \mathrm{m}), 1.45-1.25(2 \mathrm{H}, \mathrm{m}), 1.14(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me})$ and $1.08-0.90(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 212.1,176.0,51.4,50.4,49.8,45.1$, $38.4,37.0,31.6,27.7,23.7,21.8,21.4,21.3$ and $20.7 ; m / z 250$ $\left(\mathrm{M}^{+}, 7 \%\right), 218(7), 190(13), 152(18), 140(26), 112(18)$ and 111 (100).

Methyl(1a,2ß,6a,7ק,8a)-6-hydroxy-2-methyltricyclo[6.4.0.0 ${ }^{2,7}$]-dodecane-1-carboxylate 13
A mixture of the photoadduct $9(3.0 \mathrm{~g}, 12 \mathrm{mmol})$ and NaBH_{4} $(684 \mathrm{mg}, 18 \mathrm{mmol})$ in $\mathrm{MeOH}\left(50 \mathrm{~cm}^{3}\right)$ was stirred at $0^{\circ} \mathrm{C}$ for 4 h , and was then poured into brine. The mixture was extracted with ethyl acetate and the organic layer was washed with brine, dried (MgSO_{4}), and evaporated to afford compound $13(3.02 \mathrm{~g}, 99.9 \%$) as an oil (Found: M^{+}, 252.1767. $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3}$ requires M, 252.1725); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3430 \mathrm{br}, 2925,2850,1722,1445,1300$, $1243,1220,1152,1042$ and $1020 ; \delta_{\mathrm{H}} 3.75(1 \mathrm{H}, \mathrm{ddd}, J 11.5,6$ and $6,6-\mathrm{H}), 3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 2.73(1 \mathrm{H}$, ddd, $J 11.5,2.5$ and 2.5 , $8-\mathrm{H}), 2.24(1 \mathrm{H}, \mathrm{dd}, J 11.5$ and $6,7-\mathrm{H}), 2.01-1.52(7 \mathrm{H}, \mathrm{m}), 1.47-$ $0.90(7 \mathrm{H}, \mathrm{m})$ and $1.06(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}) ; \delta_{\mathrm{c}} 177.0,69.0,51.1,49.9$, 43.4, 42.1, 32.6, 31.1, 31.0, 27.9, 25.4, 22.1, 21.8, 20.9 and 20.4; $m / z 252\left(\mathrm{M}^{+}, 3 \%\right), 193(3), 175(5), 141(100)$ and $112(20)$.

Methyl ($1 \alpha, 2 \beta, 6 \alpha, 7 \beta, 8 \alpha$)-2-methyl-6 α-methylsulfonyloxytricyclo[6.4.0.0 ${ }^{2,7}$]dodecane-1-carboxylate 14 .
To a solution of the alcohol $13(3.02 \mathrm{~g}, 11.98 \mathrm{mmol})$ in pyridine ($15 \mathrm{~cm}^{3}$) was added methanesulfonyl chloride ($3 \mathrm{~cm}^{3}, 38.76$ mmol) dropwise. The solution was stirred at ambient temperature for 18 h , then was diluted with brine (external cooling). The solution was extracted with ethyl acetate and the organic layer was washed successively with aq. $10 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give mesyl ester $14(3.95 \mathrm{~g}, 99.9 \%)$ as yellow crystals, mp $89-90^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 330.1485 . \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~S}$ requires $M, 330.1501)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3850,2933,1718,1444$, $1350,1225,1160,931$ and $889 ; \delta_{\mathrm{H}} 4.80(1 \mathrm{H}$, ddd, $J 11.5,6$ and 6 , $6-\mathrm{H}), 3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OSO}_{2} \mathrm{Me}\right), 2.81(1 \mathrm{H}$, ddd, $J 11.5,3$ and $2.5,8-\mathrm{H}), 2.42(1 \mathrm{H}, \mathrm{dd}, J 11.5$ and $6,7-\mathrm{H})$, 2.05-1.92 $(2 \mathrm{H}, \mathrm{m}), 1.83-1.52(7 \mathrm{H}, \mathrm{m}), 1.45-0.91(5 \mathrm{H}, \mathrm{m})$ and 1.08 ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$); $\delta_{\mathrm{C}} 176.4,80.0,51.2,49.9,44.4,40.1,38.6$, 31.9, 31.6, 28.5, 27.7, 24.6, 21.8, 21.7, 20.6 and 20.3; m/z 330 $\left(\mathrm{M}^{+}, 35 \%\right), 235(48), 175$ (98) and 141 (100).

Methyl ($1 \alpha, 2 \beta, 6 \beta$)-2-methyltricyclo[6.4.0.0 ${ }^{2,6}$]dodec-7-ene-1carboxylate 10

A solution of the mesyl ester $14(3.9 \mathrm{~g}, 11.82 \mathrm{mmol})$ and AcOK ($11.6 \mathrm{~g}, 118.2 \mathrm{mmol}$) in TFA ($30 \mathrm{~cm}^{3}$) was stirred at ambient temperature for 14 h and the mixture was then poured into brine and extracted with ethyl acetate. The extracts were washed successively with saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was separated by column chromatography on silica gel [hexane-ethyl acetate (30:1)] to give the rearranged compound $10(1.48 \mathrm{~g}, 53.5 \%)$ and isomer 15. Compound 10 was a pale yellow oil (Found: \mathbf{M}^{+}, 234.1579. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $M, 234.1620$); $v_{\max }($ neat $) / \mathrm{cm}^{-1}$ 3036, 2950, 2860, 1728, 1442, 1250, 1220, 1148, 1089 and 1002; $\delta_{\mathrm{H}} 5.20(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 2.59(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$, $2.40-2.22(3 \mathrm{H}, \mathrm{m}), 1.93-1.02(11 \mathrm{H}, \mathrm{m})$ and $1.13(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me})$; $\delta_{\mathrm{C}} 175.9,144.1,127.7,64.2,56.1,54.7,51.0,38.4,35.3,30.6$, 28.7, 28.4, 25.3, 24.4 and $21.7 ; m / z 234\left(\mathrm{M}^{+}, 87 \%\right), 202(48), 175$ (100), 141 (25), 133 (22), 131 (20) and 105 (34).

Compound 15 was an oil (Found: M^{+}, 234.1626); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3020,2930,2860,1725,1457,1448,1302,1247$, 1223, 1209, 1154, 1128, 1092 and 1032; $\delta_{\mathrm{H}} 5.74$ and $5.73(1 \mathrm{H}$ each, each m, olefinic), $3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 2.24(1 \mathrm{H}$, ddd, J $10,5$ and $4,8-\mathrm{H}), 2.24(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 2.05-1.94(3 \mathrm{H}, \mathrm{m}), 1.68-$ $1.51(6 \mathrm{H}, \mathrm{m}), 1.46-1.25(2 \mathrm{H}, \mathrm{m})$ and $1.04(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}) ; \delta_{\mathrm{C}}$ 176.7, 128.8, 127.1, 51.0, 49.4, 41.0, 40.2, 38.7, 29.1, 28.1, 24.0, 22.3, 21.8, 21.2 and 19.4; $m / z 234\left(\mathrm{M}^{+}, 3\right), 229$ (1), 202 (1), 175 (11), 152 (2), 141 (14), 105 (6) and 94 (100).

\{(1 $\alpha, 2 \beta, 6 \beta)-2-M e t h y l t r i c y c l o\left[6.4 .0 .0^{2,6}\right]$ dodec-7-en-1-yl\}methanol 16

To a cooled solution of compound $10(1.48 \mathrm{~g}, 6.32 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}\left(40 \mathrm{~cm}^{3}\right)$ was added LAH ($600 \mathrm{mg}, 15.8 \mathrm{mmol}$). The mixture was stirred at ambient temperature for 40 h . A small amount of ethyl acetate was added carefully to the cooled
mixture to quench the excess of LAH. The mixture was poured into aq. $5 \% \mathrm{HCl}$ and extracted with ethyl acetate. The extracts were washed successively with saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was chromatographed over silica gel [hexane-ethyl acetate (12:1)] to afford the alcohol $16(1.06 \mathrm{~g}, 81.4 \%)$ as crystals, $\mathrm{mp} 58-59^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 206.1658 . \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}$ requires $M, 206.1671$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3400 \mathrm{br}, 3020,2950,2858,1470,1440,1018,992$ and $825 ; \delta_{\mathrm{H}} 5.17(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.95$ and $3.71\left(2 \mathrm{H}, \mathrm{AB}_{\mathrm{q}}, J 12\right.$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 2.52(1 \mathrm{H}, \mathrm{m}), 2.22(1 \mathrm{H}, \mathrm{m}), 2.05-1.58(9 \mathrm{H}, \mathrm{m}), 1.42-$ $1.10(4 \mathrm{H}, \mathrm{m})$ and $1.07(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}) ; \delta_{\mathrm{C}} 145.8,126.7,62.7,56.9$, $54.5,54.4,36.8,31.6,31.0,29.2,27.6,26.2,24.1$ and $22.3 ; m / z$ $206\left(\mathrm{M}^{+}, 18 \%\right), 176(42), 175(100), 147(30), 133(26), 131$ (24) and 105 (43).

$\left\{(1 \alpha, 2 \beta, 6 \beta)\right.$-2-Methyltricyclo [6.4.0.0 ${ }^{2,6}$]dodec-7-en-1-yl\}methyl methanesulfonate 17

To a solution of alcohol $16(1.06 \mathrm{~g}, 5.14 \mathrm{mmol})$ in pyridine (3 $\left.\mathrm{cm}^{3}, 37.1 \mathrm{mmol}\right)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was added methanesulfonyl chloride ($1.2 \mathrm{~cm}^{3}, 15.5 \mathrm{mmol}$) dropwise. After being stirred at ambient temperature for 16 h , the solution was diluted with ice-cooled brine. The mixture was extracted with ethyl acetate. The organic extract was washed successively with aq. $10 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give mesyl ester $17(1.45 \mathrm{~g}, 99.3 \%)$ as a yellow oil (Found: $\mathrm{M}^{+}, 284.1419 . \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~S}$ requires M, 284.1446); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3030,2945,2867,1445,1352,1173,941$ and $830 ; \delta_{\mathrm{H}} 5.20(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 4.68$ and $4.20\left(2 \mathrm{H}, \mathrm{AB}_{\mathrm{q}}, J 10\right.$, $\left.\mathrm{CH}_{2} \mathrm{OMs}\right), 3.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OSO}_{2} \mathrm{Me}\right), 2.59(1 \mathrm{H}, \mathrm{m}), 2.26(1 \mathrm{H}, \mathrm{m})$, $2.10-1.55(9 \mathrm{H}, \mathrm{m}), 1.47-1.10(4 \mathrm{H}, \mathrm{m})$ and $1.08(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me})$; $\delta_{\mathrm{C}} 143.8,128.3,69.9,56.1,54.8,52.9,37.2,36.6,32.0,30.0,29.3$, $27.3,25.5,22.5$ and $21.8 ; m / z 284\left(\mathbf{M}^{+}, 8 \%\right), 220(11), 202(10)$, $188(70), 175(100), 145(58), 131(50)$ and $105(40)$.

(1 $\alpha, 2 \beta, 6 \beta$)-1,2-Dimethyltricyclo[6.4.0.0 ${ }^{2,6}$]dodec-7-ene 18

A mixture of mesyl ester $17(1.45 \mathrm{~g}, 5.11 \mathrm{mmol})$ and LAH (580 $\mathrm{mg}, 15.3 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3}\right)$ was heated to reflux for 38 h under argon. After work-up as described for compound 16, the product was separated by a short column of silica gel (eluted with hexane) to give the hydrocarbon $18(620 \mathrm{mg})$ as a crude, pale yellow oil; $\delta_{\mathrm{H}} 5.01(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 2.54(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.24$ $1.02(14 \mathrm{H}, \mathrm{m})$ and 0.98 and $0.94(3 \mathrm{H}$ each, each $\mathrm{s}, 1-$ and $2-\mathrm{Me})$.

(1 $\alpha, 2 \beta, 6 \beta$)-7 β-Methoxy-1,2-dimethyl-8-oxatricyclo[7.4.0.0 ${ }^{2,6}$]-tridecan-9-ol 19

Ozone gas was introduced into a $\mathrm{MeOH}\left(60 \mathrm{~cm}^{3}\right)$ solution of crude hydrocarbon $18(620 \mathrm{mg})$ at $-78^{\circ} \mathrm{C}$ until a blue colour persisted. Excess of ozone was expelled with a stream of argon, the solution was treated with $\mathrm{NaBH}_{4}(500 \mathrm{mg}, 13.2 \mathrm{mmol})$, and was then stirred for 4 h at ambient temperature. The solution was then extracted with ethyl acetate. The extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was chromatographed on a silica gel column [hexane-ethyl acetate (10:1)] to afford the hemiacetal $19(589 \mathrm{mg}, 43.1 \%$ from $\mathbf{1 8})$ as crystals, mp $95-96^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 254.1879 . \mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{2}$ requires $M, 254.1882$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3400,2930,2850,1441$, $1400,1372,1160,1100,1075,1018,980,940$ and $870 ; \delta_{\mathrm{H}} 4.56(1$ $\mathrm{H}, \mathrm{d}, J 10,7-\mathrm{H}), 3.46(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.57(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 1.93-$ $1.12(14 \mathrm{H}, \mathrm{m})$ and 1.05 and 0.82 (3 H each, each s, $1-$ and $2-\mathrm{Me}$); $\delta_{\mathrm{C}} 101.1,99.6,56.2,49.7,47.0,40.0,38.5,33.7,33.0,25.0,22.7$, $21.9,21.5,20.2$ and $15.8 ; m / z 254\left(\mathrm{M}^{+}, 14 \%\right), 236(10), 222(98)$, 172 (20), 135 (87), 121 (70) and 112 (100).

(1 α)-2 β-(2α-Hydroxymethyl-1 β-methylcyclopentyl)-2 α-methylcyclohexanol 20 and (1β)-2 β-(2α-hydroxymethyl-1 β-methyl-cyclopentyl)-2 α-methylcyclohexanol 20 b

To a solution of hemiacetal $19(585 \mathrm{mg}, 2.30 \mathrm{mmol})$ in cooled, dry $\mathrm{Et}_{2} \mathrm{O}\left(30 \mathrm{~cm}^{3}\right)$ was added LAH ($\left.260 \mathrm{mg}, 6.85 \mathrm{mmol}\right)$. The mixture was stirred at ambient temperature for 20 h . After work-up as described for compound 16, the products were
separated by chromatography on a silica gel column [hexaneethyl acetate (2:1)] to give epimeric diols $20 a(266 \mathrm{mg}, 51.1 \%$) and 20b ($235 \mathrm{mg}, 45.2 \%$) respectively, as crystalline solids. Diol 20a, mp 106-107 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 226.1949 . \mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{2}$ requires $M, 226.1933$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3340 \mathrm{br}, 2940,2867,1448,1373$, 1055, 1043 and $992 ; \delta_{\mathrm{H}} 4.42(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 3.93(1 \mathrm{H}, \mathrm{dd}, J 10.5$ and $8,1-\mathrm{H}), 3.78\left(1 \mathrm{H}\right.$, dd, $J 11$ and $\left.4, \mathrm{CH}_{2} \mathrm{OH}\right), 3.34(1 \mathrm{H}, \mathrm{dd}, J$ 11 and $\left.4, \mathrm{CH}_{2} \mathrm{OH}\right), 2.12-1.95(2 \mathrm{H}, \mathrm{m}), 1.84-1.10(14 \mathrm{H}, \mathrm{m})$ and 1.06 and $1.03\left(3 \mathrm{H}\right.$ each, each s, 2- and $\left.1^{\prime}-\mathrm{Me}\right) ; \delta_{\mathrm{C}} 72.9,65.5$, $53.9,51.2,44.1,34.2,33.1,31.9,30.8,24.9,23.4,21.0,20.3$ and $12.2 ; m / z 226\left(\mathrm{M}^{+}, 1 \%\right), 208(54), 149(30), 135(40), 123(75)$ and 112 (100).

Compound 20b mp $120-121^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 226.1917$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3340 \mathrm{br}, 2940,2888,1452,1380,1310,1252$, 1145,1016 and $968 ; \delta_{\mathrm{H}} 3.93\left(1 \mathrm{H}\right.$, dd, $J 10$ and $\left.3, \mathrm{C} H_{2} \mathrm{OH}\right), 3.77$ $(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.22\left(1 \mathrm{H}\right.$, dd, $J 10$ and $\left.10, \mathrm{CH}_{2} \mathrm{OH}\right), 1.95-1.08$ $(16 \mathrm{H}, \mathrm{m})$ and $1.04\left(3 \mathrm{H}\right.$ each, each s, 2- and $\left.1^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}} 73.1,64.7$, $52.8,52.3,41.4,32.7,30.1,27.8,25.1,22.1,21.4,21.3,19.6$ and $17.9 ; m / z 226\left(\mathrm{M}^{+}, 3 \%\right), 208(84), 182(30), 149(42), 135(90)$, 123 (90) and 112 (100).

($1 \alpha, 2 \beta, 6 \beta, 9 \beta$)-1,2-Dimethyl-8-oxatricyclo[7.4.0.0 ${ }^{2,6}$]tridecane 26a

To a solution of diol $\mathbf{2 0 a}(20 \mathrm{mg}, 0.088 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1$ cm^{3})-pyridine ($0.01 \mathrm{~cm}^{3}, 0.12 \mathrm{mmol}$) was added methanesulfonyl chloride ($8 \mu \mathrm{~g}, 0.1 \mathrm{mmol}$) dropwise. After being stirred at $0^{\circ} \mathrm{C}$ for 2 h , the solution was diluted with ice-cooled brine. The mixture was extracted with ethyl acetate. The organic extract was treated as described for compound $\mathbf{1 7}$ to give compound $\mathbf{2 6 a}$ $(13 \mathrm{mg}, 71.0 \%)$ as an oil (Found: $\mathrm{M}^{+}, 208.1831 . \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}$ requires $M, 208.1827$); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 2940,2875,1468,1450$, 1372 and $1120 ; \delta_{\mathrm{H}} 3.83(1 \mathrm{H}, \mathrm{dd}, J 11$ and $2,7-\mathrm{H}), 3.78(1 \mathrm{H}, \mathrm{dd}, J$ 12 and $4,9-\mathrm{H}), 3.23(1 \mathrm{H}, \mathrm{dd}, J 11$ and $4.5,7-\mathrm{H}), 1.99-1.25(13$ $\mathrm{H}, \mathrm{m}), 1.08-0.62(2 \mathrm{H}, \mathrm{m})$ and 1.09 and $1.01(3 \mathrm{H}$ each, each s, $1-$ and $2-\mathrm{Me}) ; \delta_{\mathrm{C}} 78.4,67.3,49.0,45.2,38.7,36.8,31.9,31.5,27.5$, $25.3,24.9,23.2,20.7$ and $14.8 ; m / z 208\left(\mathrm{M}^{+}, 98 \%\right), 193(23), 179$ (12), $165(13), 151(10), 139(14), 123(30), 113(58)$ and 112 (100).

($1 \alpha, 2 \beta, 6 \beta, 9 \alpha)$-1,2-Dimethyl-8-oxatricyclo[7.4.0.0 $0^{2,6}$]tridecane 26b

The diol $\mathbf{2 0 b}(20 \mathrm{mg}$) gave compound $\mathbf{2 6 b}(15 \mathrm{mg}, 81.9 \%$) by the procedure described for its isomer 26a. Compound 26b was obtained as an oil (Found: $\mathrm{M}^{+}, 208.1829$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}$ 2940, 2865, 1468, 1462, 1384 and $1105 ; \delta_{\mathrm{H}} 3.66(1 \mathrm{H}, \mathrm{dd}, J 11.5$ and $6.5,7-\mathrm{H}), 3.41(1 \mathrm{H}$, br s, $9-\mathrm{H}), 3.09(1 \mathrm{H}, \mathrm{dd}, J 11.5$ and $11.5,7-\mathrm{H}), 2.00-1.01(15 \mathrm{H}, \mathrm{m})$ and 0.82 and 0.79 (3 H each, each s, 1 - and $2-\mathrm{Me}) ; \delta_{\mathrm{C}} 75.8,69.4,47.9,41.9,35.8,29.91,28.61$, $27.8,25.3,21.4,20.0,19.8,19.7$ and $16.5 ; m / z 208\left(\mathrm{M}^{+}, 100 \%\right)$, 193 (61), 179 (28), 165 (29), 149 (22), 139 (17), 123 (61), 113 (50) and 112 (100).

(1 α)-2 β-[2α-(tert-Butyldimethylsiloxymethyl)-1 β-methylcyclo-pentyl]-2 α-methylcyclohexanol 21a

To a solution of diol $\mathbf{2 0 a}(266 \mathrm{mg}, 1.18 \mathrm{mmol})$ in DMF $\left(5 \mathrm{~cm}^{3}\right)$ was added DIPEA ($0.22 \mathrm{~cm}^{3}, 2.4 \mathrm{mmol}$) and TBDMSCl ($266 \mathrm{mg}, 1.76 \mathrm{mmol}$) and the mixture was stirred at ambient temperature for 3 h . An excess of water was added to the solution, which was extracted with hexane. The extracts were washed successively with aq. $3 \% \mathrm{HCl}$, saturated aq. NaHCO_{3}, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was chromatographed on silica gel [hexane-ethyl acetate (15:1)] to give the monosilylated ether 21a ($391 \mathrm{mg}, 97.7 \%$) as an oil (Found: $\mathrm{M}^{+}, 340.2841 . \mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{2}$ Si requires $M, 340.2798$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3440 \mathrm{br}, 2935,2860,1470,1382,1253,1056,835$ and $773 ; \delta_{\mathrm{H}} 3.90\left(1 \mathrm{H}\right.$, dd, $J 10$ and $\left.8, \mathrm{CH}_{2} \mathrm{OTBDMS}\right), 3.74(1 \mathrm{H}$, $\mathrm{m}, 1-\mathrm{H}), 3.50\left(1 \mathrm{H}\right.$, dd, $J 10$ and $\left.5, \mathrm{CH}_{2} \mathrm{OTBS}\right), 2.93(1 \mathrm{H}$, br s, $1-$ $\mathrm{OH}), 2.08-1.05(15 \mathrm{H}, \mathrm{m}), 1.01\left(6 \mathrm{H}, \mathrm{s}, 2-\right.$ and $\left.1^{\prime}-\mathrm{Me}\right), 0.89(9 \mathrm{H}$, $\mathrm{s}, \mathrm{OSiMe}_{2} B u^{\mathrm{t}}$) and 0.05 and 0.04 (3 H each, each $\mathrm{s}, \mathrm{OSi} M e_{2} \mathrm{Bu}^{\mathrm{t}}$); $\delta_{\mathrm{C}} 73.0,66.2,53.6,51.6,44.1,34.2,33.4,32.0,29.9,25.9,25.0$,
23.6, 21.2, 20.4, 18.3, 12.9 and -5.5; m/z $340\left(\mathrm{M}^{+}, 2 \%\right), 283$ (22), 265 (12), 227 (40), 191 (84), 169 (98), 149 (27), 135 (80), 123 (99), 109 (100) and 105 (100)

(1 β)-2 β-[2α-(tert-Butyldimethylsiloxymethyl)-1 β-methylcyclo-pentyl]-2 α-methylcyclohexanol 21b

The diol 20 b ($220 \mathrm{mg}, 0.97 \mathrm{mmol}$) gave the monosilyl ether 21b ($317 \mathrm{mg}, 95.8 \%$) by the procedure described for compound 21a. Silyl ether 21b was obtained as a crystalline solid, mp $55-56^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 340.2812$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3340 \mathrm{br}$, 2950, 2860, $1468,1383,1250,1145,1120,1050,993,880,834$ and $772 ; \delta_{\mathrm{H}}$ 3.79-3.70 ($2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $\mathrm{CH}_{2} \mathrm{OTBDMS}$), $3.31(1 \mathrm{H}, \mathrm{dd}, J 9$ and 9, $\left.\mathrm{CH}_{2} \mathrm{OTBDMS}\right), 1.93-1.12(14 \mathrm{H}, \mathrm{m}), 1.01$ and $0.98(3 \mathrm{H}$ each, each s, 2 - and 1^{\prime}-Me), $0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{OSiMe}_{2} B u^{\prime}\right)$ and 0.03 (6 $\mathrm{H}, \mathrm{s}, \mathrm{OSi} \mathrm{Me}_{2} \mathrm{Bu}^{{ }^{t}}$); $\delta_{\mathrm{C}} 73.1,65.0,52.4,52.1,41.5,32.9,30.1,27.7$, $26.0,25.3,22.2,21.5,21.4,19.6,18.3,18.0,-5.2$ and $-5.3 ; m / z$ $340\left(\mathrm{M}^{+}, 1 \%\right), 307$ (1), 283 (13), 265 (7), 258 (4), 227 (41), 191 (76), 169 (75), 149 (34), 135 (85), 123 (81), 109 (100) and 105 (100).

(1 α)-2 2β - 2α-(tert-Butyldimethylsiloxymethyl)-1 β-methylcyclo-pentyl]-2a-methylcyclohexyl benzoate 22a

To a solution of the monosilyl ether 21a ($390 \mathrm{mg}, 1.15 \mathrm{mmol}$) and pyridine $\left(0.28 \mathrm{~cm}^{3}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ was added benzoyl chloride ($0.2 \mathrm{~cm}^{3}, 1.74 \mathrm{mmol}$) dropwise. The solution was stirred at ambient temperature for 15 h and then an excess of water was added to the solution. The mixture was extracted with ethyl acetate. The organic extract was washed successively with aq. $3 \% \mathrm{HCl}$, saturated aq. NaHCO_{3}, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was chromatographed on a silica gel column [hexane-ethyl acetate (25:1)] to yield benzoate 22a as an oil (Found: $\mathrm{M}^{+}, 444.3061 . \mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{Si}$ requires $M, 444.3060)$; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3060,2945,2860,1714$, $1600,1468,1450,1268,1107,1065,832,772$ and 705 ; $\lambda_{\text {max }}$ (hexane) $/ \mathrm{nm} 228 ; \delta_{\mathrm{H}} 8.03-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.30(1 \mathrm{H}, \mathrm{dd}$, $J 10.5$ and $4.5,1-\mathrm{H}), 3.87\left(1 \mathrm{H}, \mathrm{dd}, J 9\right.$ and 4, $\mathrm{CH}_{2} \mathrm{OTBDMS}$), 3.67 (1 H , dd, $J 9$ and 7, C H_{2} OTBDMS), 1.99-1.13 ($15 \mathrm{H}, \mathrm{m}$), 1.25 and $0.99\left(3 \mathrm{H}\right.$ each, each s, 2- and $\left.1^{\prime}-\mathrm{H}\right), 0.88(9 \mathrm{H}, \mathrm{s}$, $\mathrm{OSiMe}_{2} B u^{\prime}$) and 0.05 and 0.01 (3 H each, each s, $\mathrm{OSiMe} e_{2} \mathrm{Bu}^{t}$); $\delta_{\mathrm{C}} 165.8,132.7,131.2,129.5,128.3,76.8,65.1,52.9,52.2,42.7$, 34.1, 33.5, 28.5, 28.2, 26.0, 24.6, 24.0, 21.2, 20.6, 18.3, 15.7, -5.3 and $-5.4 ; \mathrm{m} / \mathrm{z} 444\left(\mathrm{M}^{+}, 1 \%\right), 265(14), 227$ (22), 191 (37), $180(33), 179(99), 169(30), 135(26), 109(76)$ and $105(100)$.

(1 β)-2 β-[2α-(tert-Butyldimethylsiloxymethyl)-1 β-methylcyclo-pentyl]-2 α-methylcyclohexyl benzoate 22b

The monosilyl ether $\mathbf{2 1 b}(313 \mathrm{mg}, 0.92 \mathrm{mmol})$ gave the benzoate 22b ($341 \mathrm{mg}, 83.4 \%$) as a crystalline solid by the procedure described for compound 22a. Compound 22b had mp $87-88^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 444.3043$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3070,2940,2858$, $1712,1470,1275,1256,1118,1069,935,877,835,775$ and 708; $\lambda_{\text {max }}$ (hexane) $/ \mathrm{nm} \mathrm{224;} \delta_{\mathrm{H}} 8.13-7.14(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.17(1 \mathrm{H}, \mathrm{m}$, $1-\mathrm{H}), 3.81\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $3.5, \mathrm{CH}_{2} \mathrm{OTBDMS}$), $3.37(1 \mathrm{H}$, dd, $J 9.5$ and 9.5, CH_{2} OTBDMS), 2.18-1.20 $(14 \mathrm{H}, \mathrm{m}), 1.16$ and 0.86 (3 H each, each s, 2- and $\mathrm{l}^{\prime}-\mathrm{Me}$), 0.91 ($9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OSiMe}_{2} B u^{\prime}\right)$ and 0.06 ($6 \mathrm{H}, \mathrm{s}, \mathrm{OSi} M e_{2} \mathrm{Bu}^{t}$); δ_{C} 165.3, 132.8, 131.1, 129.7, 128.4, 76.3, 64.9, 52.2, 52.1, 41.0, 32.2, 28.8, 26.6, $26.0,25.2,22.2,21.3,20.4,18.3,17.6,-5.2$ and $-5.3 ; m / z 444$ ($\mathrm{M}^{+}, 6 \%$), 410 (1), 387 (2), 281 (7), 265 (6), 227 (18), 191 (52), 179 (100), 169 (20), 135 (15) and 105 (80).
(1 α)-2 β-(2 α-Hydroxymethyl-1 β-methylcyclopentyl)-2 α-methylcyclohexyl benzoate 23a
Conc. aq. $\mathrm{HCl}\left(0.3 \mathrm{~cm}^{3}\right)$ was added dropwise to a solution of silyl ether 22a ($491 \mathrm{mg}, 1.11 \mathrm{mmol}$) in $95 \% \mathrm{EtOH}\left(10 \mathrm{~cm}^{3}\right.$). After being stirred at ambient temperature for 30 min , the mixture was poured into brine, and extracted with ethyl acetate. The extract was washed successively with saturated aq. NaHCO_{3} and brine, dried (MgSO_{4}), and evaporated. The
residue was subjected to chromatography on a silica gel column [hexane-ethyl acetate ($4: 1$)] to afford the monoalcohol 23a (351 $\mathrm{mg}, 96.2 \%$) as an oil (Found: $\mathrm{M}^{+}, 330.2183 . \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $M, 330.2195) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3450 \mathrm{br}$, 2940, 2875, 1708, 1600, $1449,1312,1275,1110,1022,753$ and $710 ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 232$; $\delta_{\mathrm{H}} 8.07-7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.31(1 \mathrm{H}, \mathrm{dd}, J 10$ and $4.5,1-\mathrm{H})$, $4.12\left(1 \mathrm{H}, \mathrm{dd}, J 10\right.$ and $\left.4, \mathrm{CH}_{2} \mathrm{OH}\right), 3.43(1 \mathrm{H}, \mathrm{dd}, J 10$ and 10 , $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 1.98-1.22(15 \mathrm{H}, \mathrm{m}), 1.19(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me})$ and $1.00(3 \mathrm{H}$, s, $\left.1^{\prime}-\mathrm{Me}\right) ; \delta_{\mathrm{C}} 165.9,132.9,131.0,129.4,128.5,76.6,64.7,53.4$, 52.4, 42.7, 34.1, 32.9, 28.5, 27.5, 24.5, 23.6, 21.1, 20.2 and 16.1; $m / z 330\left(\mathrm{M}^{+}, 1 \%\right), 312$ (2), 208 (13), 190 (7), 149 (10), 123 (21) and 105 (100).
(1 β)-2 β-(2 α-Hydroxymethyl-1 β-methylcyclopentyl)-2 α-methylcyclohexyl benzoate 23b
A solution of the siloxy benzoate 22b ($337 \mathrm{mg}, 0.76 \mathrm{mmol}$) in THF ($3 \mathrm{~cm}^{3}$), water ($1 \mathrm{~cm}^{3}$) and AcOH ($1 \mathrm{~cm}^{3}$) was stirred at $50-60^{\circ} \mathrm{C}$ for 2 h . An excess of water was added to the solution which was then extracted with ethyl acetate. The extracts were washed successively with aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was chromatographed over silica gel [hexane-ethyl acetate ($4: 1$)] to afford the monoalcohol 23b ($226 \mathrm{mg}, 90.2 \%$) as a crystalline solid, mp 88 $89^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 330.2196$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3300 \mathrm{br}$, 2945, $2880,1708,1448,1310,1270,1096,1020$ and 710 ; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 226 ; \delta_{\mathrm{H}} 8.13-7.41(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.15(1 \mathrm{H}, \mathrm{m}$, $1-\mathrm{H}), 3.98\left(1 \mathrm{H}\right.$, dd, $J 10$ and $\left.3, \mathrm{CH}_{2} \mathrm{OH}\right), 3.26(1 \mathrm{H}, \mathrm{dd}, J 10$ and $\left.10, \mathrm{CH}_{2} \mathrm{OH}\right), 2.18-1.20(14 \mathrm{H}, \mathrm{m})$ and 1.16 and $0.87(3 \mathrm{H}$ each, each s, 2 - and $\left.1^{\prime}-\mathrm{Me}\right) ; \delta_{\mathrm{C}} 165.3,132.8,130.9,129.7,128.4$, $76.2,64.5,52.6,52.2,40.9,32.1,28.9,26.5,25.5,22.1,21.3$, 21.2, 20.3 and $17.5 ; m / z 330\left(\mathrm{M}^{+}, 15 \%\right), 312$ (41), 256 (38), 217 (24), 208 (59), 190 (35), 175 (24), 149 (65), 137 (77), 123 (94) and 105 (100).

(1 α)-2 α-Methyl-2 $\beta-(1 \beta$-methyl-2 α-methylsulfonyloxymethylcyclopentyl)cyclohexyl benzoate 24 a

To a solution of the monoalcohol $23 \mathrm{a}(350 \mathrm{mg}, 1.06 \mathrm{mmol})$ and pyridine ($0.3 \mathrm{~cm}^{3}, 3.7 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ was added dropwise methanesulfonyl chloride ($0.2 \mathrm{~cm}^{3}, 2.58 \mathrm{mmol}$). After being stirred at ambient temperature for 14 h , the mixture was treated as described for compound 17. Removal of the solvent gave the mesyl ester 24a ($429 \mathrm{mg}, 99.2 \%$) as a yellow oil (Found: $\mathrm{M}^{+}, 408.1941 . \mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{~S}$ requires $M, 408.1970$); $v_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 3060,2940,2878,1736,1710,1449,1352,1332,1270$, 1173, 1105, 934 and 713; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 227 ; \delta_{\mathrm{H}} 8.07-7.42$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $5.34(1 \mathrm{H}, \mathrm{dd}, J 10.5$ and $5,1-\mathrm{H}), 4.73(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{OMs}$), 4.07 (1 H , dd, $J 10$ and $8.5, \mathrm{CH}_{2} \mathrm{OMs}$), 2.79 (3 H , $\left.\mathrm{s}, \mathrm{OSO}_{2} \mathrm{Me}\right), 1.98-1.20(15 \mathrm{H}, \mathrm{m})$ and 1.19 and $1.07(3 \mathrm{H}$ each, each s, 2 - and $1^{\prime}-\mathrm{Me}$); $\delta_{\mathrm{C}} 165.9,132.9,130.9,129.6,128.6,76.4$, $71.9,52.9,49.6,42.9,37.3,34.2,32.8,28.3,28.0,24.4,23.5$, 20.9, 19.7 and $15.6 ; m / z 408\left(\mathrm{M}^{+}, 1 \%\right), 313$ (13), 312 (10), 217 (95), 190 (78), 175 (35), 149 (26), 135 (26), 121 (49) and 105 (100).

(1 β)-2 α-Methyl-2 β-(1 β-methyl-2 α-methylsulfonyloxymethylcyclopentyl)cyclohexyl benzoate 24b

The monoalcohol 23b ($225 \mathrm{mg}, 0.68 \mathrm{mmol}$) gave the mesyl ester 24b ($273 \mathrm{mg}, 98.1 \%$) by the method described for isomer 24a. Compound 24b was isolated as a yellow oil (Found: \mathbf{M}^{+}, 408.1940); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3070,2980,2940,2865,1734,1703$, $1600,1450,1353,1270,1170,1112,996,938$ and 714 ; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 227 ; \delta_{\mathrm{H}} 8.12-7.43(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.16(1 \mathrm{H}, \mathrm{m}$, $1-\mathrm{H}), 4.59\left(1 \mathrm{H}, \mathrm{dd}, J 9\right.$ and $\left.2.5, \mathrm{CH}_{2} \mathrm{OMs}\right), 3.90(1 \mathrm{H}, \mathrm{dd}, J 10.5$ and $9, \mathrm{CH}_{2} \mathrm{OMs}$), $3.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OSO}_{2} \mathrm{Me}\right), 2.20-1.22(14 \mathrm{H}, \mathrm{m})$ and 1.18 and 0.91 (3 H each, each s, 2- and $1^{\prime}-\mathrm{Me}$); $\delta_{\mathrm{C}} 165.1$, $132.9,130.8,129.6,128.5,75.9,71.8,52.9,49.0,40.8,37.7,32.0$, 29.1, 26.4, 25.2, 21.9, 21.2, 20.9, 20.1 and $17.6 ; m / z 408\left(\mathrm{M}^{+}\right.$, 1%), 386 (1), 368 (2), 341 (1), 313 (10), 312 (10), 256 (3), 217 (53), $190(72), 175(21), 121$ (21) and 105 (100).

(1 α)-2 α-Methyl-2 β-(1 β-methyl-2-methylenecyclopentyl)cyclo-

 hexyl benzoate 25 aA solution of mesyl ester $\mathbf{2 4 a}(425 \mathrm{mg}, 1.04 \mathrm{mmol})$ and DBU $\left(0.8 \mathrm{~cm}^{3}, 5.35 \mathrm{mmol}\right)$ in toluene ($15 \mathrm{~cm}^{3}$) was heated to reflux for 72 h under argon. The reaction mixture was cooled to room temperature, diluted with aq. $5 \% \mathrm{HCl}$, and then extracted with hexane. The organic extract was washed successively with saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was chromatographed on a silica gel column [hexane-ethyl acetate (30:1)] to give compound 25a ($297 \mathrm{mg}, 91.3 \%$) as a crystalline solid, $\mathrm{mp} 60-61^{\circ} \mathrm{C}$ (Found: M^{+}, 312.2097. $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\mathrm{M}, 312.2089$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3070,2945,2863,1714,1640,1450,1312,1270,1105,1067$, 1023, 884 and $710 ; \lambda_{\text {max }}$ (hexane) $/ \mathrm{nm} 228 ; \delta_{\mathrm{H}} 8.07-7.39(5 \mathrm{H}, \mathrm{m}$, ArH), $5.25(1 \mathrm{H}, \mathrm{dd}, J 10.5$ and $5,1-\mathrm{H}), 4.97$ and $4.83(1 \mathrm{H}$ each, each m , olefinic), 2.35-1.12 $(14 \mathrm{H}, \mathrm{m})$ and 1.32 and $1.08(3 \mathrm{H}$ each, each s, 2 - and $\left.1^{\prime}-\mathrm{Me}\right) ; \delta_{\mathrm{C}} 165.5,160.4,132.7,131.0,129.6$, $128.4,106.7,77.8,51.1,42.4,38.7,37.5,32.6,28.2,26.6,24.7$, 23.2, 21.4 and 13.2; $m / z 312\left(\mathrm{M}^{+}, 1 \%\right), 217$ (50), 216 (33), 190 (69), 175 (31), 161 (11), 147 (10), 121 (20) and 105 (100).

(1 β)-2 α-Methyl-2 β-(1 β-methyl-2-methylenecyclopentyl)cyclohexyl benzoate 25 b

The mesyl ester 24b ($270 \mathrm{mg}, 0.66 \mathrm{mmol}$) gave compound 25b ($67 \mathrm{mg}, 32.4 \%$) by the method described for isomer 25 a . Compound 25b was an oil (Found: \mathbf{M}^{+}, 312.2091); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3070,2945,2865,1712,1600,1448,1267,1170$, $1106,1065,1021$ and $710 ; \lambda_{\max }$ (hexane) $/ \mathrm{nm} 229 ; \delta_{\mathrm{H}} 8.13-7.38$ (5 $\mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.30(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 4.96$ and 4.76 (1 H each, each m, olefinic), 2.35-0.80 ($14 \mathrm{H}, \mathrm{m}$) and 1.08 and $1.07(3 \mathrm{H}$ each, each s, 2- and 1^{\prime}-Me); $\delta_{\mathrm{C}} 165.7,160.2,132.8,131.2,129.7,128.3$, $107.5,74.6,50.6,41.7,38.7,37.8,28.0,27.3,25.7,23.3,21.3$, 20.2 and 18.8; $m / z 312\left(\mathrm{M}^{+}, 4 \%\right), 217(56), 190(65), 175(13)$, 161 (5), 147 (4), 133 (4), 121 (5) and 105 (100).

2β-[2α-(tert-Butyldimethylsiloxymethyl)-1 β-methylcyclo-pentyl]-2 α-methylcyclohexanone 27

PCC on alumina ($1 \mathrm{~g}, 0.93 \mathrm{mmol}$) was added to a solution of the monosilyl ether $\mathbf{2 1 b}$ ($48 \mathrm{mg}, 0.14 \mathrm{mmol}$) in benzene ($5 \mathrm{~cm}^{3}$). The mixture was then stirred at ambient temperature for 6 h , after which $\mathrm{Et}_{2} \mathrm{O}$ was added. The solid residue was removed by filtration and washed with $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was concentrated and the residue was chromatographed on a silica gel column [hexane-ethyl acetate (30:1)] to give the ketone 27 ($44 \mathrm{mg}, 92.3 \%$) as an oil (Found: M^{+}, 338.2628. $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si}$ requires $M, 338.2641$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2950,2860,1700,1471$, $1458,1380,1252,1070,833$ and $772 ; \delta_{\mathrm{H}} 3.35(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and 4.5, $\mathrm{CH}_{2} \mathrm{OTBDMS}$), $3.21(1 \mathrm{H}$, dd, $J 9.5$ and 9.5 , $\mathrm{CH}_{2} \mathrm{OTBDMS}$), $2.60-2.23(3 \mathrm{H}, \mathrm{m}), 2.00-1.51(11 \mathrm{H}, \mathrm{m}), 1.26$ $(1 \mathrm{H}, \mathrm{m}), 1.18$ and 0.94 (3 H each, each s, 2 - and $1^{\prime}-\mathrm{Me}$), 0.87 (9 $\left.\mathrm{H}, \mathrm{s}, \mathrm{OSiMe}_{2} B u^{l}\right)$ and $0.02\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OSi}_{\mathrm{Me}}^{2} \mathrm{Bu}^{\mathrm{l}}\right) ; \delta_{\mathrm{C}} 215.7,66.1$, $52.5,51.7,50.9,40.0,35.2,35.1,29.0,26.3,26.0,25.4,22.2,21.9$, 21.4, 18.3 and $-5.22 ; m / z 338\left(\mathrm{M}^{+}, 1 \%\right), 323$ (5), $282(59), 281$ (59), 241 (5), 226 (6), 199 (72), 189 (46), 169 (100), 131 (20) and 112 (38).

(1 α)-2 2β-(2 α-Hydroxymethyl-1 β-methylcyclopentyl)-2 α methylcyclohexanol 20 a and (1β)-2 2 -(2α-hydroxymethyl-1 β -methylcyclopentyl)-2 α-methylcyclohexanol 20 b (alternative preparation)

LAH ($20 \mathrm{mg}, 0.53 \mathrm{mmol}$) was added to an ice-cooled solution of the ketone $27(40 \mathrm{mg}, 0.12 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right)$. After being stirred at ambient temperature for 10 h , the mixture was treated as usual. The products were separated by chromatography on a silica gel column [hexane-ethyl acetate (2:1)] to give the diols $\mathbf{2 0 a}$ ($13 \mathrm{mg}, 48.6 \%$) and $\mathbf{2 0 b}$ ($12 \mathrm{mg}, 44.8 \%$) as crystals.

(1 α)-2 α-Methyl-2 β-(1 β-methyl-2-methylenecyclopentyl)cyclohexanol 28

LAH ($100 \mathrm{mg}, 2.64 \mathrm{mmol}$) was added to an ice-cooled solution
of benzoate 25 a ($295 \mathrm{mg}, 0.95 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}\left(15 \mathrm{~cm}^{3}\right)$. The mixture was stirred at ambient temperature for 8 h . After the usual procedures, the product was purified by chromatography on a silica gel column [hexane-ethyl acetate (20:1)] to afford the alcohol 28 ($182 \mathrm{mg}, 92.5 \%$) as crystals, $\mathrm{mp} 42-43^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 208.1834 . \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}$ requires $M, 208.1827$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3310 \mathrm{br}, 3075,2930,2864,1640,1473,1445,1360,1140,1058$, 1046, 941 and $878 ; \delta_{\mathrm{H}} 4.97$ and 4.87 (1 H each, each m, olefinic), $3.78(1 \mathrm{H}, \mathrm{dd}, J 11.5$ and $4.5,1-\mathrm{H}), 2.41-2.14(4 \mathrm{H}, \mathrm{m}), 1.80-0.82$ $(10 \mathrm{H}, \mathrm{m})$ and 1.17 and $1.02\left(3 \mathrm{H}\right.$ each, each s, 2- and $\left.1^{\prime}-\mathrm{Me}\right) ; \delta_{\mathrm{C}}$ $161.8,106.6,74.4,51.2,43.3,38.9,37.7,32.6,32.2,26.2,25.1$, 23.2, 21.5 and $11.9 ; m / z 208\left(\mathrm{M}^{+}, 14 \%\right), 190(27), 175(21), 147$ (10), 135 (12), 121 (54), 112 (100) and 113 (100).

2α-Methyl-2 β-(1 β-methyl-2-methylenecyclopentyl)cyclohexanone 29

PCC on alumina ($4 \mathrm{~g}, 3.71 \mathrm{mmol}$) was added to a solution of the alcohol 28 ($180 \mathrm{mg}, 0.87 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$. The mixture was stirred at ambient temperature for 3 h . The solid residue was removed by filtration and washed with $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was concentrated and the residue was chromatographed on a silica gel column [hexane-ethyl acetate (15:1)] to give ketone 29 ($157 \mathrm{mg}, 88.1 \%$) as an oil (Found: $\mathrm{M}^{+}, 206.1656$. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}$ requires $M, 206.1671$); $\nu_{\max }($ neat $) / \mathrm{cm}^{-1} 3075,2945$, $2863,1700,1638,1461,1445,1362,1115,1050$ and $880 ; \delta_{\mathrm{H}} 4.93$ and 4.81 (1 H each, each m , olefinic), 2.52-2.20 $(4 \mathrm{H}, \mathrm{m}), 1.98-$ $1.30(10 \mathrm{H}, \mathrm{m})$ and 1.25 and $1.20\left(3 \mathrm{H}\right.$ each, each s, 2- and $1^{\prime}-$ Me); $\delta_{\mathrm{C}} 215.6,160.5,106.5,54.1,49.4,39.9,38.9,38.4,33.9$, 25.5, 25.1, 23.4, 20.9 and 19.3; $m / z 206\left(\mathrm{M}^{+}, 19 \%\right), 191$ (8), 177 (8), 163 (10), 152 (10), 135 (9), 121 (20) and 112 (100).

6 α-Methyl-6 β-(1 β-methyl-2-methylenecyclopentyl)cyclohex-2enone 12

To a solution of LDA [prepared from diisopropylamine (0.3 $\mathrm{cm}^{3}, 2.13 \mathrm{mmol}$) and butyllithium ($1.1 \mathrm{~cm}^{3}$ of a $1.68 \mathrm{~mol} \mathrm{dm}^{-3}$ solution, 1.85 mmol$)$ in dry THF $\left(5 \mathrm{~cm}^{3}\right)$] was added a solution of the ketone $29(155 \mathrm{mg}, 0.75 \mathrm{mmol})$ in dry THF $\left(4 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under argon. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 20 min and then a solution of benzeneselenenyl chloride $(220 \mathrm{mg}$, 1.15 mmol) and HMPA ($0.1 \mathrm{~cm}^{3}$) in dry THF ($0.5 \mathrm{~cm}^{3}$) was added to the mixture via a cannula. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for an additional 1 h and quenched at the same temperature with aq. $3 \% \mathrm{HCl}$. The reaction mixture was allowed to warm to room temperature and was then extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The yellow residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 cm^{3}) and treated with $30 \% \mathrm{H}_{2} \mathrm{O}_{2}\left(0.5 \mathrm{~cm}^{3}\right)$ in the presence of pyridine ($0.5 \mathrm{~cm}^{3}$). After being stirred at ambient temperature for 1 h , the solution was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and water. The organic solution was washed successively with aq. $3 \% \mathrm{HCl}$ and saturated aq. NaHCO_{3}, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was chromatographed on a silica gel column [hexane-ethyl acetate ($40: 1$)] to give the enone 12 (86 mg , 56.0%) as an oil (Found: $\mathrm{M}^{+}, 204.1484 . \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}$ requires M, 204.1514); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3078,3035,2955,2870,1668,1642$, 1461, 1433, 1380, 1290, 1218, 1070, 882 and $815 ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$ $226 ; \delta_{\mathrm{H}} 6.87(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.84(1 \mathrm{H}$, ddd, $J 10,2.5$ and $1.5,2-$ H), 4.93 and 4.83 (1 H each, each m , olefinic), 2.48-1.38 (10 H , m) and 1.33 and 1.23 (3 H each, each s, 2 - and $1^{\prime}-\mathrm{Me}$); $\delta_{\mathrm{C}} 204.2$, $160.5,147.4,130.3,106.3,49.9,49.4,39.0,38.4,30.1,26.0,23.4$, 23.3 and $17.2 ; \mathrm{m} / \mathrm{z} 204\left(\mathrm{M}^{+}, 14 \%\right), 189$ (1), 175 (1), 161 (1), 144 (3), 121 (5) and 110 (100).

3,6 α-Dimethyl-2 β-(1 β-methyl-2-methylenecyclopentyl)cyclohex-2-enone 30

Methyllithium ($2.6 \mathrm{~cm}^{3}$ of a $1.2 \mathrm{~mol} \mathrm{dm}^{-3}$ solution, 3.12 mmol) was added to a mixture of CuI ($360 \mathrm{mg}, 1.89 \mathrm{mmol}$) and dry $\mathrm{Et}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ under argon. To the mixture was added a solution of the enone $12(85 \mathrm{mg}, 0.42 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}\left(4 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 4 h . A solution of
benzeneselenenyl chloride ($120 \mathrm{mg}, 0.63 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(0.5$ cm^{3}) was added to the solution via a cannula. After being stirred at $0^{\circ} \mathrm{C}$ for an additional 1 h , the mixture was poured into saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed successively with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was subjected to oxidation and work-up as described for compound 12. The product was separated by chromatography on a silica gel column [hexane-ethyl acetate ($35: 1$)] to give the enone $\mathbf{3 0}$ (39 $\mathrm{mg}, 42.9 \%$) as an oil (Found: $\mathrm{M}^{+}, 218.1676 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}$ requires M, 218.1671); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3075,2950,2870,1662,1640$, 1433, 1375, 1306, 1210, 1070 and 983; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} \mathrm{233} ; \delta_{\mathrm{H}}$ $5.69(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 4.91$ and $4.81(1 \mathrm{H}$ each, each m , olefinic), 2.42-1.94 ($6 \mathrm{H}, \mathrm{m}$), $1.89(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me}), 1.88-1.38(4 \mathrm{H}, \mathrm{m})$ and 1.32 and 1.19 (3 H each, each s, 2- and $1^{\prime}-\mathrm{Me}$); δ_{C} 204.2, 160.7, $159.0,127.2,106.2,49.4,48.5,39.0,38.4,30.3,28.4,26.1,23.8$, 23.4 and $17.4 ; m / z 218\left(\mathrm{M}^{+}, 13 \%\right), 188$ (3), 175 (6), 173 (3), 145 (3), 131 (3), 124 (100) and 109 (28).

References

1 Y. Machida and S. Nozoe, Tetrahedron, 1972, 28, 5105; S. Nozoe and Y. Machida, Tetrahedron Lett., 1970, 2671.
2 A. R. Hesketh, L. Gledhill, B. W. Bycroft, P. M. Dewick and J. Gilbert, Phytochemistry, 1993, 32, 93.

3 S. Abrahamson and B. Nilsson, Proc. Chem. Soc., 1964, 188.
4 J. Gutzwiller, R. Mauli, H. P. Sigg and C. Tamm, Helv. Chim. Acta, 1964, 47, 2234.
5 W. R. Roush, M. A. Marletta, S. Russo-Rodriguez and J. Recchia, J. Am. Chem. Soc., 1985, 107, 3354.

6 T. Yoshizawa and N. Morooka, Agric. Biol. Chem., 1973, 37, 2933.

7 A. Z. Joffe, Fusarium Species: Their Biology and Toxicology, Wiley, New York, 1986.
8 J. C. Gilbert and R. D. Selliah, J. Org. Chem., 1993, 58, 6255.
9 M. Tanaka and K. Sakai, Tetrahedron Lett., 1991, 32, 5581; K. E. Harding, K. S. Clement and C.-Y. Tseng, J. Org. Chem., 1990, 55, 4403; J. C. Gilbert and T. A. Kelly, Tetrahedron Lett., 1989, 30, 4193; R. L. Snowden, R. Brauchli and P. Sonnay, Helv. Chim. Acta, 1989, 72, 570; A. J. Pearson and M. K. O'Brien, J. Org. Chem., 1989, 54, 4663; J. Chem. Soc., Chem. Commun., 1987, 1447; F. L. VanMiddlesworth, J. Org. Chem., 1986, 51, 5019; G. A. Kraus and P. J. Thomas, J. Org. Chem., 1986, 51, 503; J. C. Gilbert and T. A. Kelly, J. Org. Chem., 1986, 51, 4485; J. C. Gilbert and B. E. Wiechman, J. Org. Chem., 1986, 51, 258; K. E. Harding and K. S. Clement, J. Org. Chem., 1984, 49, 3870; R. H. Schlessinger and J. A. Schultz, J. Org. Chem., 1983, 48, 402; M. Suda, Tetrahedron Lett., 1982, 23, 427; S. C. Welch, A. S. C. P. Rao, C. G. Gibbs and R. Y. Wong, J. Org. Chem., 1980, 45, 4077.

10 M. Tada and Y. Nieda, Bull. Chem. Soc. Jpn., 1988, 61, 1416.
11 L. Lombarado, Tetrahedron Lett., 1984, 25, 227.
12 H. Wetter and K. Oertle, Tetrahedron Lett., 1985, 26, 5515; R. F. Cunico and L. Bedell, J. Org. Chem., 1980, 45, 4797.

13 E. J. Corey and A. Venkateswarlu, J. Am. Chem. Soc., 1972, 94, 6190.

14 R. M. Williams and L. K. Maruyama, J. Org. Chem., 1987, 52, 4044.
15 Y. S. Cheng, W. L. Liu and S. H. Chen, Synthesis, 1980, 223.

Paper 5/04940G
Received 25th July 1995
Accepted 31st October 1995

